Sorry, you need to enable JavaScript to visit this website.

A European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe

TitoloA European aerosol phenomenology - 7: High-time resolution chemical characteristics of submicron particulate matter across Europe
Tipo di pubblicazioneArticolo su Rivista peer-reviewed
Anno di Pubblicazione2021
AutoriBressi, M., Cavalli F., Putaud J.P., Fröhlich R., Petit J.-E., Aas W., Äijälä M., Alastuey A., Allan J.D., Aurela M., Berico M., Bougiatioti A., Bukowiecki N., Canonaco F., Crenn V., Dusanter S., Ehn M., Elsasser M., Flentje H., Graf P., Green D.C., Heikkinen L., Hermann H., Holzinger R., Hueglin C., Keernik H., Kiendler-Scharr A., Kubelová L., Lunder C., Maasikmets M., Makeš O., Malaguti Antonella, Mihalopoulos N., Nicolas J.B., O'Dowd C., Ovadnevaite J., Petralia Ettore, Poulain L., Priestman M., Riffault V., Ripoll A., Schlag P., Schwarz J., Sciare J., Slowik J., Sosedova Y., Stavroulas I., Teinemaa E., Via M., Vodička P., Williams P.I., Wiedensohler A., Young D.E., Zhang S., Favez O., Minguillón M.C., and Prévôt A.S.H.
RivistaAtmospheric Environment: X
Volume10
Paginazione100108
Data di pubblicazioneJan-04-2021
ISSN25901621
Abstract

Similarities and differences in the submicron atmospheric aerosol chemical composition are analyzed from a
unique set of measurements performed at 21 sites across Europe for at least one year. These sites are located
between 35 and 62◦N and 10◦ W – 26◦E, and represent various types of settings (remote, coastal, rural, industrial,
urban). Measurements were all carried out on-line with a 30-min time resolution using mass spectroscopy based
instruments known as Aerosol Chemical Speciation Monitors (ACSM) and Aerosol Mass Spectrometers (AMS) and following common measurement guidelines. Data regarding organics, sulfate, nitrate and ammonium concentrations,
as well as the sum of them called non-refractory submicron aerosol mass concentration ([NR-PM1]) are
discussed. NR-PM1 concentrations generally increase from remote to urban sites. They are mostly larger in the
mid-latitude band than in southern and northern Europe. On average, organics account for the major part
(36–64%) of NR-PM1 followed by sulfate (12–44%) and nitrate (6–35%). The annual mean chemical composition
of NR-PM1 at rural (or regional background) sites and urban background sites are very similar. Considering rural
and regional background sites only, nitrate contribution is higher and sulfate contribution is lower in midlatitude
Europe compared to northern and southern Europe. Large seasonal variations in concentrations (μg/
m3) of one or more components of NR-PM1 can be observed at all sites, as well as in the chemical composition of
NR-PM1 (%) at most sites. Significant diel cycles in the contribution to [NR-PM1] of organics, sulfate, and nitrate
can be observed at a majority of sites both in winter and summer. Early morning minima in organics in
concomitance with maxima in nitrate are common features at regional and urban background sites. Daily variations
are much smaller at a number of coastal and rural sites. Looking at NR-PM1 chemical composition as a
function of NR-PM1 mass concentration reveals that although organics account for the major fraction of NR-PM1
at all concentration levels at most sites, nitrate contribution generally increases with NR-PM1 mass concentration
and predominates when NR-PM1 mass concentrations exceed 40 μg/m3 at half of the sites.

DOI10.1016/j.aeaoa.2021.100108
Titolo breveAtmospheric Environment: X
Citation Key9052