Titolo | Correlation between elastic properties and morphology in short fiber composites by X-ray computed micro-tomography |
---|---|
Tipo di pubblicazione | Articolo su Rivista peer-reviewed |
Anno di Pubblicazione | 2021 |
Autori | Lionetto, F., Montagna F., Natali D., De Pascalis F., Nacucchi Michele, Caretto Flavio, and Maffezzoli A. |
Rivista | Composites Part A: Applied Science and Manufacturing |
Volume | 140 |
ISSN | 1359835X |
Parole chiave | Composite morphology, Computerized tomography, Fiber reinforced plastics, Fibers, Length distributions, Mean intercept length, Morphology, Morphometric analysis, Morphometric method, Short fiber composites, Stars, Volume distributions, Volume orientation, X rays |
Abstract | In this work the architectural anisotropy of short fiber reinforced polymers (SFRPs) has been characterized using X-ray computed micro-tomography (micro-CT) with four different morphometric methods: Mean Intercept Length (MIL), Volume Orientation (VO), Star Length Distribution (SLD) and Star Volume Distribution (SVD). The fabric tensor obtained from micro-CT analysis provided information on the fiber orientation, indicating that fibers were partially aligned in the injection direction. The fiber length and orientation obtained from optical microscopy and from the morphometric analysis in 3D, respectively, has been used to determine the mechanical properties of the composite sample, using a model based on micro and macromechanics. This approach leads to the prediction of the elastic constants of the component for any possible composite morphology resulting from injection, representing a key need for the design of SFRP components. © 2020 |
Note | cited By 0 |
URL | https://www.scopus.com/inward/record.uri?eid=2-s2.0-85096127124&doi=10.1016%2fj.compositesa.2020.106169&partnerID=40&md5=4df3668f305d2f4dc9b14e348d6729a4 |
DOI | 10.1016/j.compositesa.2020.106169 |
Citation Key | Lionetto2021 |